
Hengtian Reengineering Expertise Overview

1. Overview of Reengineering

Reengineering, also known as renovation or reclamation, is the examination and alteration of

a subject system to reconstitute it in a new form and to subsequently implement it.

Reengineering generally includes some form of reverse engineering followed forward

engineering or restructuring. This may include modification with respect to new requirements

not met by the original system. The following graph depicts the general model of

reengineering.

Fig.1 General Model of Software Reengineering

2. Business Drivers

Although many enterprises have reengineered or replaced their legacy systems since the

1990s, there are still many legacy systems in various domains, like the financial domain, that

remain to this day. On the other hand, as businesses develop, a newly developed system will

gradually become incapable of satisfying the new market, and the system itself will become a

“legacy system”. Developing new systems to replace the legacy system will require software

investments, but after the economic crisis many enterprises have cut their IT facilities’

budgets. Compared to developing a completely new system, the cost of using reengineering

approaches to renew the legacy system would be decreased by 60% . Therefore, reengineering

would yield more opportunities in further software engineering. The advantages of

reengineering are:

 Improved reliability, maintainability, performance, etc

 Complete comprehension of the legacy system

Legacy System Target System

Requirements Requirements

Conceptual Conceptual

Re-design

Alteration

Implementation

Design Design

Implementation

Re-specify

Re-think

Re-code

Reverse

Engineering

Forward

Engineering

 Decreased development costs and risks

 Shortened system development cycle

 Undisrupted business continuity

3. Challenges for Reengineering and Our Outstanding Solutions

The Challenge (1)

Reverse Engineering

Difficulties include outdated techniques, architecture regression, and a lack of documents and

developers. IT staff could not fully comprehend the whole system. There are four critical

difficulties: business comprehension from program language, design recovery from

architecture-degenerated software, the gap from programming to human thought, and

combination of bottom-up and top-down analysis.

Too Much Human Effort

Although there are many software clustering, program slicing and pattern matching

approaches that facilitate reverse engineering, most tools require a great deal of human

interaction. It often takes more than 60% of total resources and project time.

Our Solution

Program Comprehension Framework

Program comprehension and analysis is one of the critical difficulties for reverse engineering.

We proposed a framework of business rules extraction and comprehension of legacy systems.

The framework is composed of five parts: legacy code slicing, domain variable identification,

data analysis, business rules representation and verification. It has been applied to analyze a

large financial legacy system.

The Challenge (2)

Migration

Migrating the legacy system with outdated techniques to a new platform is difficult for almost

every system.

Our Solution

Reengineering Legacy System into J2EE Partition-Based Distributed Environment

Compared to previous target environments, a Partition-Based Distributed Environment has

several advantages, including high performance, scalability and availability. The target system

would take advantages of the J2EE environment. The framework consists of code conversation,

component identification, component interface modeling and target system deployment. This

model has been applied into one equity trading system.

The Challenge (3)

Efforts and Risk Assessments

Since assessments cover various factors like business requirements, software process, platform,

techniques and project staff, it is difficult to provide a standard assessment model. Most

current models can only be used for legacy systems of specify domains.

Software Maintenance

Software maintenance is inevitable during reengineering. Therefore, the legacy system for

reengineering may not be the latest version, which leads to great challenges and risks.

Our Solution

Spiral Model

In this model, the legacy system is reengineered into new platform iteratively. In each cycle,

only a part of the system is alternated and deployed in the new environment. Compared to the

big-bang approach, this model could decrease reengineering risk.

Since each module alteration or adding new requirements sub-procedure is performed on a

trustable stable system, the risk is decreased each time, which reduces the total risk of the

legacy system reengineering.

4. Our Research on Reengineering

From the industry experience, some reengineering models including Partition-Based Software

Reengineering Framework, Incremental Software Reengineering Model and Global

Cooperative Software Reengineering Model were proposed. Additionally, a reverse

engineering framework on recovering business rules was brought out. Now we are conducting

research on the reengineering of large-scale software systems. All our research achievements

have been published on the international conferences or journals including ICSE2006 and

ICSM2007.

Following are part of the published papers related to reengineering.

1. “Reengineering Standalone C++ Legacy Systems into the J2EE Partition Distributed Environment”, In
Proceedings of the 28th International Conference on Software Engineering (ICSE’06 Far East Experience
Track), Shanghai, China, May 20-28, 2006, 525-533.

2. “Experience Report: Reengineering Standalone System into the Service-Partition Distributed Environment”,
In Proceedings of IEEE International Conference on Software Maintenance (ICSM’07), Paris, France, Oct
2007, pp. 477-480.

3. “Business Rules Extraction from Large Legacy Systems”, In Proceedings of the European Conference on

Software Maintenance and Reengineering (CSMR’04), Tampere, Finland, Mar. 24-26, 2004, 249-258.

4. “Inter-procedural Static Slicing of Concurrent Programs Based on threaded System Dependence Graph

(tSDG)”, WSEAS transactions on information science and applications, vol. 4, Issue 10, Oct 2007, pp. 1249 –
1254.

5. “A Framework of Business Recovery from Large Legacy Systems”, WSEAS Transactions on Information
Science & Applications, vol. 3, Issue 3, Mar. 2006, pp. 576-583.

6. “A New Approach of Component Identification Based on Weighted Connectivity Strength Metrics”,

Information Technology Journal, Jan. 2008, 7(1):56-62.

5. Our Achievements on Reengineering

(1) Customer Feedback and Media coverage

“What started as a small, offshore R&D facility for State Street Corp is now a fully fledged

technology center in China that has re-engineered 100 of its legacy applications. The

increased productivity has delivered more benefits than the labor arbitrage alone ever could.”

——Jerry Cristoforo, State Street EVP and CTO

“The system is now in production with four times the previous volume and it took less than

six months" -- The client’s CIO Joseph C. Antonellis described the success of this project.

——From “An IT Flower Blooms in China”, CIO Magazine

“Labor savings have been significant (approximately 25% of the cost for U.S.-based staff),

but savings through revamped legacy applications have been even greater, avoiding expensive

replacements. Re-engineering has been achieved for less than 2% of the cost of system

replacement and has saved millions of dollars.”

——From “Case Study: State Street Corp. Takes a Chinese Road to

Supercharged Applications”, Gartner.

(2) Case Study

Equity Trading System Reengineering

Fund Administration System reengineering

